HOME ABOUT CONTACT AVAILABLE ISSUES SUBSCRIBE MEDIA & ADS
LATEST UPDATES » Vol 22, No 12, December 2018 – The story of WeDoctor - The medical service system for tomorrow       » World's first unmanned clinic in China       » International outcry over world's first gene-edited babies born in China       » More HIV-positive foreigners enter China       » Pain-free childbirth to be promoted in China       » The past, present and future of life science      
BIOBOARD - ASIA
New molecule can kill five types of deadly drug-resistant superbugs
The newly developed synthetic molecule may offer limited or even, no side effects.

An international research team led by the Institute of Bioengineering and Nanotechnology (IBN) of the Agency for Science, Technology and Research (A*STAR) and IBM Research developed a synthetic molecule that can kill five deadly types of multidrug-resistant bacteria with limited, if any, side effects. Their new material could be developed into an antimicrobial drug to treat patients with antibiotic-resistant infections. This finding was reported in the scientific journal Nature Communications.

Superbugs that are resistant to antibiotics are a serious health threat. According to the UK Review on Antimicrobial Resistance, superbugs kill around 700,000 people worldwide each year. By 2050, 10 million people could die each year if existing antibiotics continue to lose their effectiveness.

“There is an urgent global need for new antimicrobials that are effective against superbugs. The situation has become more acute because bacteria are starting to develop resistance to the last-line antibiotics, which are given only to patients infected with bacteria resistant to available antibiotics,” said Professor Jackie Y. Ying, Executive Director of IBN.

The research community is trying to develop alternatives to antibiotics using synthetic polymers. However, the antimicrobial polymers developed so far are either too toxic for clinical use, not biodegradable or can only target one type of bacteria.

Dr Yi Yan Yang from IBN brought together a multidisciplinary research team from the US, China and Singapore to develop a new class of antimicrobial polymers called guanidinium-functionalized polycarbonates with a unique killing mechanism that can target a broad range of multidrug-resistant bacteria. It is biodegradable and non-toxic to human cells.

The polymer kills bacteria by first binding specifically to the bacterial cell. Then, the polymer is transported across the bacterial cell membrane into the cytoplasm, where it causes precipitation of the cell contents (proteins and genes), resulting in cell death.

The polymers were tested on mice infected with five hard-to-treat multidrug-resistant bacteria: Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, methicillin-resistant Staphylococcus aureu and Pseudomonas aeruginosa. These superbugs are commonly acquired by patients in the hospitals and can cause systemic infections that lead to septic shock and multiple organ failure. The results showed that the bacteria were effectively removed from the mice and no toxicity was observed.

The researchers then further tested the effectiveness of the polymers on mice with two types of systemic infections caused by superbugs: peritonitis (an infection of the stomach’s inner lining) and lung infections from Pseudomonas aeruginosa. The polymers eliminated the bacterial infections in both groups of mice with negligible toxicity.

Dr Yi Yan Yang, Group Leader at IBN said, “Once the polymer finishes its job of killing the bacteria, it will be naturally degraded after three days and will not remain in the body.”

To determine whether the bacteria will develop any resistance to the polymer, the team collaborated with Dr Paola Florez de Sessions at A*STAR’s Genome Institute of Singapore and the Cell Engineering group of Dr Simone Bianco at IBM Research – Almaden to perform genomic analysis. They found that the bacteria did not show any resistance development even after multiple treatments with the polymer.

This study was also done in collaboration with the University of North Dakota’s School of Medicine and Health Sciences, and the First Affiliated Hospital of Zhejiang University’s College of Medicine.

IBN and IBM are now seeking collaborations with pharmaceutical companies to develop the polymers into an antimicrobial treatment for patients.

References:

Willy Chin, Guansheng Zhong, Qinqin Pu, Chuan Yang, Weiyang Lou, Paola Florez de Sessions, Balamurugan Periaswamy, Ashlynn Lee, Zhen Chang Liang, Xin Ding, Shujun Gao, Collins Wenhan Chu, Simone Bianco, Chang Bao, Yen Wah Tong, Weimin Fan, Min Wu, James L. Hedrick and Yi Yan Yang, “A Macromolecular Approach to Eradicate Multidrug Resistant Bacterial Infections While Mitigating Drug Resistance Onset,” Nature Communications, 9 (2018) 917.

Click here for the complete issue.

NEWS CRUNCH  
news Asia is the fastest growing region for nutraceuticals
news 2018 Nobel Prize in Physiology or Medicine winners
news Vitafoods Asia expands by 40 per cent in 2018
PR NEWSWIRE  
Asia Pacific Biotech News
EDITORS' CHOICE  
COLUMNS  

APBN Editorial Calendar 2018
January:
Obesity / Outlook for 2018
February:
Searching for the fountain of youth
March:
Women in Science - Making a difference
April:
Digestive health in the 21st century - Trust your guts
May:
Dental health - The root to good health
June:
Cancer - Therapies and strategies for better patient outcomes
July:
Water management - Technologies for biotech and pharmaceutical industries
August:
Regenerative technology - Meat of the future
September:
Doctor Robot - The digital healthcare revolution
October:
Bones / Breast cancer
November:
Liver health / Top science research nations & institutions
December:
AIDS / Breakthrough of the year/Emerging trends
Editorial calendar is subjected to changes.
MAGAZINE TAGS
About Us
Events
Available issues
Editorial Board
Letters to Editor
Instructions to Authors
Advertise with Us
CONTACT
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
Tel: 65-6466-5775
Fax: 65-6467-7667
» For Editorial Enquiries:
   biotech_edit@wspc.com or Ms Lim Guan Yu
» For Subscriptions, Advertisements &
   Media Partnerships Enquiries:
   biotech_ad@wspc.com
Copyright© 2018 World Scientific Publishing Co Pte Ltd  •  Privacy Policy