HOME ABOUT CONTACT AVAILABLE ISSUES SUBSCRIBE MEDIA & ADS
LATEST UPDATES » Vol 22, No 07, July 2018 – Water management- Technologies for biotech and pharmaceutical industries       » Why sunshine improves mood and makes us smarter       » SGD110 million lab to create healthier foods and sustainable biochemicals       » Entries open for the USD170,000 Ryman Prize       » Could the eye be the window to brain degeneration?       » High vitamin D levels linked to lower cholesterol in children      
EYE ON CHINA
Nanozymes to target tumor cells
Traditionally, natural enzymes were used for tumor therapy, however they were less sensitive and stable. Nanozymes have good biocompatibility, and have the potential to optimize tumour treatment.

Nanozymes, or artificial enzymes, are nanomaterials with intrinsic enzyme-like activities, have been widely used in cancer diagnosis in recent years, but controlling their performance in treating a target tumor cell remains a challenge.

A research team, jointly led by Yan Xiyun from the Institute of Biophysics under the Chinese Academy of Sciences and Gao Lizeng from Yangzhou University, has for the first time developed a strategy to coordinate nanozymes to target tumor cells and selectively kill tumors. Their findings were published in Nature Communications.

During tumor growth and development, elevated levels of hydrogen peroxide (H2O2) are often exhibited in solid tumors, which render tumor cells more resistant to therapeutic treatment.

This situation reduces the effect of chemotherapy. If the accumulated H2O2 can be combined with oxygen to be converted into a toxic reactive oxygen species, this may enable more effective means of tumor therapy, according to Yan.

Previously natural enzymes were used, however, they were less sensitive and not as stable, so enzyme mimics or artificial enzymes were developed, but the efficiency of enzyme mimics were often insufficient.

Therefore, the team has developed a nanozyme which has shown excellent bio-compatibility.

To optimize its performance for tumor therapy, scientists used ferritin, an intracellular protein found in most human tissue, to modify the surface of the nanozymes to enable them to target tumors.

Tests demonstrated that ferritin-modified nanozymes suppressed tumors in animal models, proved the feasibility of using nanozymes for tumor therapy.

"If modified, nanozymes can function as Trojan horses, transporting cell-destroying compounds into tumor cells," said Yan.

Nanozymes can be fine-tuned via size, dosage, and surface modification. In addition, they have multiple functions, high stability, and are easy to scale up at a low cost, according to the study.

"We hope this nanozyme-based tumor therapy can enable new strategies for cancer treatment," Yan said.

Click here for the complete issue.

NEWS CRUNCH  
news Shire, Microsoft and EURORDIS form Global Commission to accelerate time to diagnosis for children with rare diseases
news EmTech Asia explores future of life, humanity and economy
news Biology of Ageing II - Impactful Interventions
PR NEWSWIRE  
Asia Pacific Biotech News
EDITORS' CHOICE  
COLUMNS  
Click here to receive APBN e-newsletters once a month!

APBN Editorial Calendar 2018
January:
Obesity / Outlook for 2018
February:
Searching for the fountain of youth
March:
Women in Science - Making a difference
April:
Digestive health in the 21st century - Trust your guts
May:
Dental health - The root to good health
June:
Cancer - Therapies and strategies for better patient outcomes
July:
Water management- Technologies for biotech and pharmaceutical industries
August:
Regenerative medicine / Biotech start ups
September:
Digital healthcare / 3D printing
October:
Bones / Breast cancer
November:
Liver health / Top science research nations & institutions
December:
AIDS / Breakthrough of the year/Emerging trends
Editorial calendar is subjected to changes.
MAGAZINE TAGS
About Us
Events
Available issues
Editorial Board
Letters to Editor
Instructions to Authors
Advertise with Us
CONTACT
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
Tel: 65-6466-5775
Fax: 65-6467-7667
» For Editorial Enquiries:
   biotech_edit@wspc.com or Ms Lim Guan Yu
» For Subscriptions, Advertisements &
   Media Partnerships Enquiries:
   biotech_ad@wspc.com
Copyright© 2018 World Scientific Publishing Co Pte Ltd  •  Privacy Policy