HOME ABOUT CONTACT AVAILABLE ISSUES SUBSCRIBE MEDIA & ADS

LATEST UPDATES » Vol 22, No 09, September 2018 – Doctor Robot - The digital healthcare revolution       » Gene helps rice adapt to colder climates       » 'Longevity protein' found effective in primates       » Korean beef inhibits proliferation of colorectal cancer cells       » First 3D printed human corneas       » Zombie gene protects against cancer in elephants      
BIOBOARD - ASIA-PACIFIC
Making the switch: Potent anticancer liposomal drugs
Novel nanocarrier-based delivery strategy for chemotherapeutics improves selective cancer accumulation of drugs and reduces potential side effects.

Dr. Steve Roffler and colleagues at the Institute of Biomedical Sciences, Academia Sinica, have announced a general chemical approach to actively load and stably retain potent anticancer drugs in nanoliposomes. The study was published in the academic journal Nature Communications.

A major bottleneck in the effective use of nanomedicines to treat cancer has been the difficulty to deliver sufficient amounts of potent anticancer agents to tumor cells; highly potent drugs tend to leak out of biocompatible nanocarriers before the nanomedicine accumulates in tumors. This greatly decreases the amount of drug delivered to cancer cells and causes systemic toxicity to the patient.

The team developed a chemical switch that can be converted between different physical states based on pH. The switch can be attached to cancer drugs to facilitate efficient drug loading into liposomes, which are nanometer-sized spherical vesicles. Importantly, the switch can spontaneously change to a form that stably retains the anticancer drugs inside the liposomes.

Dr Roffler said, “Previous studies show that in most cases, drugs leak out of liposomes before the nanomedicine can accumulate in tumors”. Attachment of the switch to potent anticancer drugs allowed creation of very stable nanoliposomes. The switch prevents drug leakage to minimize unwanted toxicity and maximize accumulation of potent anticancer drugs inside tumors.

Furthermore, a linker between the drug and the switch is activated after uptake of the liposomes into cancer cells to allow selective release of anticancer drug. Treatment of mice bearing human breast cancer tumors resulted in high tumor/blood ratios of cancer drug in tumors and produced complete cures of majority of mice without apparent toxicity.

These studies indicate that the switch offers new opportunities to create safe and effective nanomedicines for the treatment of cancer and other diseases. Current studies are focused on treating pancreatic cancers or metastatic colon cancer in mice models.

Click here for the complete issue.

NEWS CRUNCH  
news Shire, Microsoft and EURORDIS form Global Commission to accelerate time to diagnosis for children with rare diseases
news EmTech Asia explores future of life, humanity and economy
news Biology of Ageing II - Impactful Interventions
PR NEWSWIRE  
Asia Pacific Biotech News
EDITORS' CHOICE  
COLUMNS  
Click here to receive APBN e-newsletters once a month!

APBN Editorial Calendar 2018
January:
Obesity / Outlook for 2018
February:
Searching for the fountain of youth
March:
Women in Science - Making a difference
April:
Digestive health in the 21st century - Trust your guts
May:
Dental health - The root to good health
June:
Cancer - Therapies and strategies for better patient outcomes
July:
Water management - Technologies for biotech and pharmaceutical industries
August:
Regenerative technology - Meat of the future
September:
Doctor Robot - The digital healthcare revolution
October:
Bones / Breast cancer
November:
Liver health / Top science research nations & institutions
December:
AIDS / Breakthrough of the year/Emerging trends
Editorial calendar is subjected to changes.
MAGAZINE TAGS
About Us
Events
Available issues
Editorial Board
Letters to Editor
Instructions to Authors
Advertise with Us
CONTACT
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
Tel: 65-6466-5775
Fax: 65-6467-7667
» For Editorial Enquiries:
   biotech_edit@wspc.com or Ms Lim Guan Yu
» For Subscriptions, Advertisements &
   Media Partnerships Enquiries:
   biotech_ad@wspc.com
Copyright© 2018 World Scientific Publishing Co Pte Ltd  •  Privacy Policy