HOME ABOUT CONTACT AVAILABLE ISSUES SUBSCRIBE MEDIA & ADS
LATEST UPDATES » Vol 23, No 10, October 2019 – Disruptive Urban Farming — Microbes, Plasmids, and Recycling       » Chinese scientist find new possibilities in dengue virus control       » 50 young scientists awarded with the inaugural XPLORER PRIZE       » Entering the China market to provide regional support       » Science, Tech, and policies convene for a sustainable future      
BIOBOARD - ASIA-PACIFIC
How evolutionarily conserved genetic material determines reproductive ability of plants
Led by Professor Yuichiro Watanabe, a research team from the University of Tokyo found critical genetic component that can regulate plant reproduction.

Liverworts grow all over the world and resemble moss, spreading on moist soil under some shade. Male and female versions of liverwort are recognized by unique, umbrella-shaped structures that shoot up from the base of the plant.

"Liverworts have the maximum power with the least structure," said Professor Yuichiro Watanabe from the University of Tokyo's Department of Life Sciences, an expert in plant molecular biology.

The liverwort genome is structurally simple compared to the flowering plants that are commonly used in research laboratories, like tobacco and thale cress (Arabidopsis). Flowering plants are evolutionarily "younger" plants than liverworts, with gene duplications and redundancies that make studying their genomes more complicated. Despite that simplicity, the liverwort genome appears to have all the same life-cycle stages and abilities to regulate them.

Upon examination, researchers discovered that the liverwort has about 100 different genetic molecules called microRNA, which regulate the activity of other genes.

About eight of the liverwort microRNAs were nearly identical to known thale cress microRNAs. These eight microRNAs fascinated researchers because the ancestral plants that evolved into modern liverworts and modern thale cress split over 450 million years ago.

One of the microRNAs that helps flowering plants control the shift to the reproductive stage is also one of the eight microRNAs shared between thale cress and liverworts.

Watanabe鈥檚 research team created a genetically modified version of liverwort lacking that specific microRNA 156/529 to determine its role as an evolutionarily conserved microRNA. In the absence of the microRNA, liverworts produced reproductive cells on their vegetative tissues rather than developing the normal umbrella-shaped reproductive structures that distinguish males and females.

"This was amazing to us. Those liverworts skipped some part of the reproductive process and the body itself becomes the reproductive organ," said Watanabe.

This study reveals that microRNA156/529 and the other molecules it interacts with are part of an important control module used by potentially all land plants to regulate their reproductive timing.

Watanabe imagines that in the future, farmers could measure the amount of microRNA156/529 in crops to predict harvest times.

"We hope our results inspire others to develop new applications for plant reproduction," said Watanabe.

Click here for the complete issue.

NEWS CRUNCH  
news The Proteona Oncology Challenge using ESCAPETM Single Cell Proteogenomic Analysis
news New computational fluid dynamics solution for modeling aerosol mixtures in biomedical and environmental research
news Medial Fair Thailand opened on 11th September 2019 with a focus on future-proofing Thailand's healthcare industry to meet the challenges and opportunities of the next decade
news Biofuel Producers and Users to Convene in Singapore for Global Biofuels Summit
PR NEWSWIRE  
Asia Pacific Biotech News
SPOTLIGHT  
LIFE OF A SCIENTIST  

APBN Editorial Calendar 2019
January:
Taiwan Medical tourism
February:
Marijuana as medicine — Legal marijuana will open up scientific research
March:
Driven by curiosity
April:
Career developments for researchers
May:
What's cracking — Antibodies in ostrich eggs
June:
Clinical trials — What's in a name?
July:
Traditional Chinese medicine in modern healthcare — Integrating both worlds
August:
Digitalization vs Digitization — Exploring Emerging Trends in Healthcare
September:
Healthy Ageing — How Science is chipping in
October:
Disruptive Urban Farming — Microbes, Plasmids, and Recycling
Editorial calendar is subjected to changes.
MAGAZINE TAGS
About Us
Events
Available issues
Editorial Board
Letters to Editor
Instructions to Authors
Advertise with Us
CONTACT
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
Tel: 65-6466-5775
Fax: 65-6467-7667
» For Editorial Enquiries:
   biotech_edit@wspc.com or Ms Deborah Seah
» For Subscriptions, Advertisements &
   Media Partnerships Enquiries:
   biotech_ad@wspc.com
Copyright© 2019 World Scientific Publishing Co Pte Ltd  •  Privacy Policy