HOME ABOUT CONTACT AVAILABLE ISSUES SUBSCRIBE MEDIA & ADS
LATEST UPDATES » Vol 22, No 05, May 2018 – Dental health - The root to good health       » Drugs to watch 2018       » Dragonfly-inspired nano coating kills bacteria upon contact       » New compound improves stroke recovery in monkeys and mice       » Cancer stem cell therapy breakthrough       » Draft genome of tea plant sequenced      
NEWS CRUNCH
Sharks' hunting ability destroyed under climate change
University of Adelaide

The hunting ability and growth of sharks will be dramatically impacted by increased CO2 levels and warmer oceans expected by the end of the century, a University of Adelaide study has found.

Published today in the journal Scientific Reports, marine ecologists from the University of Adelaide's Environment Institute report long-term experiments that show warmer waters and ocean acidification will have major detrimental effects on sharks' ability to meet their energy demands, with the effects likely to cascade through entire ecosystems.

The laboratory experiments, studying Port Jackson sharks and including large tanks with natural habitat and prey, found embryonic development was faster under elevated temperatures. But the combination of warmer water and high CO2 increased the sharks' energy requirement, reduced metabolic efficiency and removed their ability to locate food through olfaction (smelling). These effects led to marked reductions in growth rates of sharks.

"In warmer water, sharks are hungrier but with increased CO2 they won't be able to find their food," says study leader Associate Professor Ivan Nagelkerken, Australian Research Council (ARC) Future Fellow.

"With a reduced ability to hunt, sharks will no longer be able to exert the same top-down control over the marine food webs, which is essential for maintaining healthy ocean ecosystems."

PhD student Jennifer Pistevos, who carried out the study, says the Port Jackson is a bottom-feeding shark that primarily relies on its ability to smell to find food. Under higher CO2, the sharks took a much longer time to find their food, or didn't even bother trying, resulting in considerably smaller sharks.

Most research studying the effects of ocean acidification and climate change on fish behaviour has concentrated on small fish prey. Long-term studies on the behaviour and physiology of large, long-lived predators are largely lacking.

Fellow University of Adelaide marine ecologist Professor Sean Connell says the results of the study provide strong support for the call to prevent global overfishing of sharks.

"One-third of shark and ray species are already threatened worldwide because of overfishing," Professor Connell says. "Climate change and ocean acidification are going to add another layer of stress and accelerate those extinction rates."

Source: EurekAlert
NEWS CRUNCH  
news Shire, Microsoft and EURORDIS form Global Commission to accelerate time to diagnosis for children with rare diseases
news EmTech Asia explores future of life, humanity and economy
news Biology of Ageing II - Impactful Interventions
PR NEWSWIRE  
Asia Pacific Biotech News
EDITORS' CHOICE  
COLUMNS  
Subscribe to APBN E-Newsletter
Find us under 'Others' option to receive APBN e-newsletters thrice a month!

APBN Editorial Calendar 2018
January:
Obesity / Outlook for 2018
February:
Searching for the fountain of youth
March:
Women in Science - Making a difference
April:
Digestive health in the 21st century - Trust your guts
May:
Dental health - The root to good health
June:
Oncology / Biotech landscape in APAC
July:
Water management / Vaccination
August:
Regenerative medicine / Biotech start ups
September:
Digital healthcare / 3D printing
October:
Bones / Breast cancer
November:
Liver health / Top science research nations & institutions
December:
AIDS / Breakthrough of the year/Emerging trends
Editorial calendar is subjected to changes.
MAGAZINE TAGS
About Us
Events
Available issues
Editorial Board
Letters to Editor
Instructions to Authors
Advertise with Us
CONTACT
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
Tel: 65-6466-5775
Fax: 65-6467-7667
» For Editorial Enquiries:
   biotech_edit@wspc.com or Ms Lim Guan Yu
» For Subscriptions, Advertisements &
   Media Partnerships Enquiries:
   biotech_ad@wspc.com
Copyright© 2018 World Scientific Publishing Co Pte Ltd  •  Privacy Policy