LATEST UPDATES » Vol 25, No. 05, May 2021 – The Innovative Technology: Enhancing Healthcare for All       » Projecting Changes in Winds and Sea Surface       » 3D Biomaterial for Stem Cell Therapy against Arthritis       » Mapping Changes in Cancer Burden in China       » Singapore Enhances its National Precision Medicine Programme       » Enhancing Healthcare Workforce Productivity and Optimization      
Vol 25, No. 04, April 2021   |   Issue PDF view/purchase
Mimicking Properties of Human Skin
Research team from the Structural Composite Research Center at the Institute of Advanced Composite Materials of the Korea Institute of Science and Technology (KIST) creates improved material to be applicable to wearable sensors and artificial skin.

Human skin bruises when the tissue and muscle in the area suffer trauma or become damaged due to an application of blunt force. However, when an object suffers an impact that is expected to damage, it is necessary to examine every inch of the surface of the material to understand the extent of the damaged. In the case of an airplane, for example, it is fully inspected to ensure safety. If the areas damaged by a physical impact undergo a change in colour, just like human skin, it will be easy to distinguish what needs to be repaired.

Spiropyran, a molecule that reacts to external force, changes colour when it is physically stimulated due to a change in its chemical structure. When this substance is injected in concrete or silicone, it reacts to mechanical stimuli such as force, deformation and damage by changing colour. However, the mechano-sensitivity of such composite material is too low for real-life applications. When applied to silicone, for example, the colour changes only after deformation of at least 500 percent.

A research team headed by Dr Kim Jaewoo from the Structural Composite Research Center at the Institute of Advanced Composite Materials of the Korea Institute of Science and Technology (KIST) has drastically improved the mechano-sensitivity for the material to be applicable to wearable sensors and artificial skin.

In order to enhance sensitivity, previous studies have applied a method of modifying the molecular structure of spiropyran according to the material it would be combined with prior to synthesis. In contrast, the KIST researchers synthesized the composite material first and then added a certain type of solvent to improve the sensitivity through a sort of aging process. Then, the changes in the colour and fluorescence of the composite material were observed, while controlling the absorption time with the solvent, and it was found that increasing the treatment time improved the sensitivity. The spiropyran-polymer developed through this new process showed 850 percent improvement in sensitivity compared to the previously developed materials. Such remarkable sensitivity was seen for various types of deformations such as tension, compression and bending.

Also, unlike the existing method of improving sensitivity by manipulating each material separately, the new method developed through this study that increases sensitivity simply with an aging process using a solvent presents advantages in that it can be easily applied to various materials.

Dr Kim Jaewoo from KIST said, “Through this study, a process that can dramatically improve the mechano-sensitivity of spiropyran-based stress-sensitive smart polymer materials have been developed, and through analysis, the mechanism behind sensitivity improvement was identified. Based on this, we plan to devote ourselves to a follow-up study in which we apply the technology to futuristic wearable sensors and artificial skin.”

news Commemorating World Health Day with Viatris
news Entire industrial chain resources of advanced medical equipment are lining up at Medtec China 2021
news CPhI & P-MEC China gives a glimpse of the success returning pharma events will deliver in 2021
news Highlights from the E&L China 2020 Conference

About Us
Available issues
Editorial Board
Letters to Editor
Contribute to APBN
Advertise with Us
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
Tel: 65-6466-5775
Fax: 65-6467-7667
» For Editorial Enquiries:
   biotech_edit@wspc.com or Ms Deborah Seah
» For Subscriptions, Advertisements &
   Media Partnerships Enquiries:
Copyright© 2021 World Scientific Publishing Co Pte Ltd  •  Privacy Policy