HOME ABOUT CONTACT AVAILABLE ISSUES SUBSCRIBE MEDIA & ADS
LATEST UPDATES » Vol 25, No. 07, July 2021 – Ageing Better – Breakthroughs and Innovations for a Greying World       » A Plant-Based Remedy for Big, Broken Hearts       » Fuelling the Future with Multi-Element Alloys and Green Hydrogen       » RADICA: A Radical, Rapid Method for Accurate Detection of Viruses       » Untangling the Twists of Alzheimer’s Plaques       » Turning Aquaculture Trash to Treasure for Tissue Repair      
Vol 25, No. 07, July 2021   |   Issue PDF view/purchase
BIOBOARD
Three Part’s the Charm: Tripartite-chromosome E. coli Takes Center Stage
Researchers from Rikkyo University have successfully developed a tripartite-chromosome E. coli strain and formulated a new cell-free technology to synthesise gigantic DNA, revolutionising synthetic biology and synthetic genomics.

Potatoes, corn, and soy. Most of us would associate this short list of items with health foods, fresh produce, and cuisine ingredients among many other things. However, it should come as no surprise that many of these fruits and vegetables are genetically engineered to withstand harsher conditions and meet the increasing demand for food.

Genetic engineering, or genetic modification, refers to the process of directly altering the genetic makeup of organisms using recombinant DNA technology. In many cases, the DNA incorporated to target organisms consists of new, desirable traits that improve the final product. The possibilities of genetically modified organisms (GMOs) are endless, offering an array of benefits including but not limited to herbicide resistance, fortified nutrition, and higher yield.

However, to develop these GMOs, beneficial DNAs need to first be “cut” from a donor organism and cultivated in a plasmid-host before they are “pasted” into the target organisms. Escherichia coli (E. coli), a strain of bacteria with a single circular DNA consisting of about 4.6 million base pairs, is one of the most widely-used hosts for gene cloning and protein production. Not only is E. coli easily propagated in laboratory settings but it also offers high efficiency of DNA introduction into cells.

Nevertheless, there are limitations in the bacteria's usage. Although the E. coli genome can be extracted and transferred straightforwardly, scientists still face difficulties in manipulating the DNA. Its substantial genome size, in particular, has posed a great challenge. Fortunately, a team of researchers has recently devised a simple, but equally effective solution to overcome this barrier in size.

Scientists from Rikkyo University, led by Assistant Professor Takahito Mukai and Professor Masayuki Su'etsugu, have successfully split the E. coli genome into three segments, each amounting to approximately one million base pairs. This tripartite-genome was obtained by manipulating the smallest E. coli genome strain known to date, chopping and inserting it into another E. coli bacteria.

The findings of this study not only resulted in the development of the split-genome but also demonstrated how a segmented genome can still be functional without disrupting the normal growth and proliferation of E. coli bacteria. The underlying mechanisms behind this uninterrupted process have yet to be understood, thus requiring further investigation and experimentation to uncover how replication and distribution processes are regulated in the three-part-genome.

Besides splitting the E. coli genome, the researchers have also developed a technology that deviates from the conventional cell-based DNA synthesis process. Their cell-free technique of producing gigantic DNA is a powerful amplification tool applicable to circular DNAs with up to 1 million base pairs.

Merging their findings, the team’s cell-free synthesis of split-genome could lead to the creation of artificial E. coli with valuable functions, such as material production. With this discovery, we can hope to unlock the mysteries behind genome replication and segregation, potentially advancing tools in synthetic biology and transforming ways that we manipulate genome and design life.


Source: Yoneji et al. (2021). Grand scale genome manipulation via chromosome swapping in Escherichia coli programmed by three one megabase chromosomes. Nucleic Acids Research.

NEWS CRUNCH  
news Singapore Health & Biomedical Congress 2021 is Set to Brave the New Frontiers as We Revolutionise and Transform Healthcare
news Anti-Pandemic Forum to be Hosted by Top-Notch American and Chinese Scientists
news Commemorating World Health Day with Viatris
news Entire industrial chain resources of advanced medical equipment are lining up at Medtec China 2021
SPOTLIGHT  

MAGAZINE TAGS
About Us
Events
Available issues
Editorial Board
Letters to Editor
Contribute to APBN
Advertise with Us
CONTACT
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
Tel: 65-6466-5775
Fax: 65-6467-7667
» For Editorial Enquiries:
   biotech_edit@wspc.com or Ms Carmen Chan
» For Subscriptions, Advertisements &
   Media Partnerships Enquiries:
   biotech_ad@wspc.com
Copyright© 2021 World Scientific Publishing Co Pte Ltd  •  Privacy Policy