LATEST UPDATES » Vol 26, Nos. 05 & 06, May & June 2022 – Living Better for Longer: Cutting-Edge Research in Geriatric Medicine       » How Oxidation Can Lead to Mitochondrial Dysfunction and Age-Dependent Cognitive Disorders       » New Semiconductor Microchip Detects Prostate Cancer Markers With Ultra-High Sensitivity       » New Method for Synthesising Sulphur-Based Medicines Can Boost Drug Discovery Efficiency and Speed       » Selecting the Best Target for Deep Brain Stimulation in Parkinson’s Disease       » A Single Metabolite Can Promote Tissue Regeneration and Delay Ageing       » A New Light-Sensitive Way to Control Parathyroid Hormone Secretion for the Prevention of Bone Loss      
Vol 26, Nos. 05 & 06, May & June 2022   |   Issue PDF view/purchase
Strategies for Advanced Prostate Cancer Treatment
A group of scientists has identified the role of progesterone in advanced prostate cancer and found a potential therapeutic target to suppress the generation of progesterone.

According to the Global Cancer Observatory, in 2020, there were more than 100,000 new cases of prostate cancer in China. Based on previous studies, the development of prostate cancer is sustained by androgens. As treatment options, androgen deprivation therapy (ADT) significantly reduces the amount of circulating testosterone to castration levels, while abiraterone works to decrease the amount of androgen in the body. When used in combination, it leads to an androgen-deficient environment in patients. However, disease progression is inevitable.

In a study published in Cell Reports Medicine, a group of researchers led by Li Zhenfei of the CAS Center for Excellence in Molecular Cell Science of the Chinese Academy of Sciences revealed the oncometabolite role of progesterone in advanced prostate cancer and proposed strategies to eliminate its oncogenic effect as an aspect of prostate cancer treatment.

Here, the team investigated alteration in the metabolomics of abiraterone-resistant patients and observed that one metabolite, progesterone, increased significantly. They found that transient treatment with high doses of progesterone would trigger multiple pathways to encourage the proliferation of cancer cells, while long-term treatment with progesterone at a low dosage will increase the expression of GATA2, resulting in an irreversible alteration in the transcriptome that produces disease progression.

The team also looked into the metabolic pathway of progesterone and identified the enzyme 3βHSD1 as a potential therapeutic target for preventing the generation of progesterone. Specifically, they discovered that biochanin-A, an isoflavone rich in soy and other foods, is a 3βHSD1 inhibitor and restricts prostate cancer development.

Based on the cancer-causing effects of progesterone, plasma progesterone levels were observed to be negatively correlated with the duration of abiraterone treatment. This means that progesterone might be a potential predictive biomarker for abiraterone response and as of now, related clinical research is still underway.

From this study, the team has demonstrated that biochanin-A inhibits 3βHSD1, thereby restricting the cancer-causing effects of progesterone and curbing the development of prostate cancer.

Source: Hou et al. (2022). Inhibiting 3βHSD1 to eliminate the oncogenic effects of progesterone in prostate cancer. Cell Reports Medicine, 3(3), 100561.

news Medtec China 2022 Is Now Open for Visitor Registration, Helping Medical Device Manufacturers in Medtech Sourcing and Supply Chain Stabilisation
news Inaugural Asia Summit on Global Health highlights Hong Kong's advantages
news Asia Summit on Global Health (ASGH) 2021 — Shaping a Resilient and Sustainable Future
news TechInnovation 2021 Virtual Exhibition to Showcase Sustainable Energy, Food, and Healthcare Solutions

About Us
Available issues
Editorial Board
Letters to Editor
Contribute to APBN
Advertise with Us
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
Tel: 65-6466-5775
Fax: 65-6467-7667
» For Editorial Enquiries:
   [email protected] or Ms Carmen Chan
» For Subscriptions, Advertisements &
   Media Partnerships Enquiries:
   [email protected]
Copyright© 2022 World Scientific Publishing Co Pte Ltd  •  Privacy Policy