HOME ABOUT CONTACT AVAILABLE ISSUES SUBSCRIBE MEDIA & ADS
LATEST UPDATES » Vol 25, No. 10, October 2021 – An Inquiry into Life in the Universe       » A New Cell Factory for High-Purity DHA Production       » A New Nanoplatform With Dual-Mode Therapeutic Pathways       » Improving Breast Cancer Detection With New Liquid Biopsy Diagnosis Model       » Alginic Acid: The Secret to Building Better Bones       » Next Generation Genome Engineering With Mini CRISPR — Made Smaller to Deliver Better      
NEWS CRUNCH
Snapshot of Stem Cell Expression using Single-cell RNA Sequencing
Hinxton, Cambridge, UK, 1 October 2015 — Researchers on the Wellcome Genome Campus reveal new genes involved in stem cell pluripotency, new subpopulations of cells and new methods to find meaning in the data. Published in Cell Stem Cell, the findings have implications for the study of early development.

Stem cells exist in a 'ground' state before something triggers them to become develop into functional cells such as liver, heart or blood cells. What sparks that change has a lot to do with how, when and in what order the genes inside that cell are expressed, or turned on and off. Characterising the gene expression at play in stem cells is essential to understanding the fundamental biology of health and disease. It can also help in detecting genetic factors that figure into a person's response to a medicine.

Researchers at the Wellcome Trust Sanger Institute and EMBL's European Bioinformatics Institute (EMBL-EBI) used single-cell RNA sequencing technology to study the expression of thousands of genes in around 700 mouse Embryonic Stem Cells (mESCs), and found there is a signature 'gene expression mix' that characterises different cell populations. They also found this mix determines the length of the cell cycle. In other words, heterogeneity in gene expression across cells underpins cellular behaviour.

"You can take a kind of snapshot of this very dynamic process of gene expression, and infer a lot of information from it," explains Ola Kolodziejczk of EMBL-EBI and the Sanger Institute. "It's a bit like taking a picture of a crowd in Times Square at New Year's Eve from above and ordering all of the individuals by age to get a sense of their life cycle, or grouping them by clothing style to infer which party they will go onto next."

Single-cell RNA sequencing helps researchers see what makes all the cells in our bodies take on different shapes, predict what they might do and explore the many elements that contribute to their fates. In this study, the team developed novel approaches to characterise how gene expression levels vary, stem cell by stem cell, in three different states.

"One really exciting thing was that we identified new genes involved in the stem-cell regulatory network, and validated our findings using the CRISPR technology," says Jong Kyoung Kim of EMBL-EBI. "That brings us closer to inferring how the whole network is put together — and that in turn can give us insights into what keeps stem cells in a ground state and what triggers them to change."

By dissecting the noisy mix of gene expression cell by cell, the researchers uncovered a rare subpopulation of cells that express a couple of marker genes also expressed by cells at the two-cell stage of the embryo, which are able to develop into any cell type ('totipotent'). While the rare mESCs identified in this study only share some molecular features of the two-cell system, they will provide valuable resources to the study of early development.

"Our study really shows the power of single-cell transcriptomics, how it can reveal biologically relevant heterogeneity in expression that is often masked by traditional methods," says Sarah Teichmann, group leader at both EMBL-EBI and the Sanger Institute. "It adds a whole new dimension to how we find relationships between cultured cells and natural development, which is making a big difference in genomics research."

About

Kolodziejczk AA, Kim JK, et al. (2015). Single-cell RNA sequencing of pluripotent states unlocks modular transcriptional variation. Cell Stem Cell, pages. Published online 1 October; DOI: 10.1016/j.stem.2015.09.011

Source: EMBL-EBI
FORTHCOMING ISSUE  
Launch of world-first expert resource to foster best practice osteoporosis care in the Asia Pacific
NEWS CRUNCH  
news Asia Summit on Global Health (ASGH) 2021 — Shaping a Resilient and Sustainable Future
news TechInnovation 2021 Virtual Exhibition to Showcase Sustainable Energy, Food, and Healthcare Solutions
news A New Approach for Effective Gout Treatment
news TechInnovation Returns from 28 to 30 September 2021
SPOTLIGHT  

MAGAZINE TAGS
About Us
Events
Available issues
Editorial Board
Letters to Editor
Contribute to APBN
Advertise with Us
CONTACT
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
Tel: 65-6466-5775
Fax: 65-6467-7667
» For Editorial Enquiries:
   biotech_edit@wspc.com or Ms Carmen Chan
» For Subscriptions, Advertisements &
   Media Partnerships Enquiries:
   biotech_ad@wspc.com
Copyright© 2021 World Scientific Publishing Co Pte Ltd  •  Privacy Policy